圆周率的故事(关于圆周律的小故事有哪些)

一、祖冲之有关圆周率的故事是什么

故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。

正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,抬头一看,正见儿子在外玩耍,便叫道:“暅儿,你且去后山砍两根竹子来。”

祖冲之的儿子叫祖暅,聪明伶俐,受祖冲之的影响,耳濡目染,也喜欢了数学,后来也成了数学家,提出了著名的“祖暅定理”。听见父亲唤自己,急忙跑了进来问道:“爹,唤儿有什么事情?”

祖冲之说道:“你去后山砍一根毛竹来。”

暅儿问道:“又要做算筹?”

祖冲之答道:“不错,你去砍了与我拿来。”

成就:

祖冲之在数学上的杰出成就,是关于圆周率的计算。三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

二、圆周率的来历故事

圆周率的由来是经过很多人进行尝试不同的方法进行计算而来,在秦汉以前,通常以“径一周三”作为圆周率,这就是古率。后来发现古率误差太大,圆周率应是“圆径一而周三有余”。祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。

圆周率用希腊字母π(读作[paɪ])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。

圆周率的计算

圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。

圆周率用字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

三、关于圆周率的故事


圆周率的故事


求算圆周率的值是数学中一个非常重要也是非常困难的研究课题.中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进.祖冲之是中国古代伟大的数学家和天文学家.祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率.

在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一.在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数.祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值.祖冲之究竟用什么方法得出这一结果,现在无从查考.如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!

祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”.

四、关于圆周律的小故事有哪些


圆周率的故事


圆周率的小故事:

从前,有一个特别喜爱喝酒的私塾先生。他为了有空溜出去喝酒,就常常留一些刁难人的题目让学生们做。有一回,他酒瘾又犯了,但是还不到放学时间,他便只好故伎重演,叫学生背诵圆周率,放学之前得背出30位小数,否则不许回家。

“3.141592653589793238462643383279”,学生们硬着头皮死背。偏偏有几个调皮鬼满不在乎,一溜烟奔后山玩儿去了。忽然,他们看见了先生正和一个和尚在山顶的凉亭里喝酒呢!几个调皮鬼好不气愤,于是啄磨开了…………

等到夕阳西下,先生酒醉饭饱,想起了这帮学生,便回来考查他们。那些听话的学生偏偏背不下来,倒是那些调皮鬼张口就来:“山巅一寺一壶酒(3.14159),尔乐苦煞吾(26535),把酒吃(897),酒杀尔(932),杀不死(384),遛尔遛死(6264),扇扇刮(338),扇耳吃酒(3279)。”

调皮鬼们边念边手舞足蹈地表演。先生气得目瞪口呆,却也无可奈何。

关于圆周率的故事,关于圆周律的小故事有哪些的介绍到此结束,希望对大家有所帮助。


圆周率的故事


猜你喜欢